🙂 第一次练习
首先尝试硬回溯,不行。。。。
😄 第二次练习
# 失败错误
解题代码
private List<String> retList;
/**
* 方向数组
*/
private int[][] direction = {{-1, 0}, {1, 0}, {0, -1}, {0, 1}};
private boolean[][] marked;
private String word;
private char[][] board;
public int m;
public int n;
public List<String> findWords(char[][] board, String[] words) {
retList = new ArrayList<>();
for (String word : words) {
if (exist(board, word)) {
retList.add(word);
}
}
return retList;
}
/**
* 判断单词是否存在在二维矩阵中
* @param board 范围
* @param word 单词
* @return true or false
*/
public boolean exist(char[][] board, String word) {
m = board.length;
if (m == 0) {
return false;
}
n = board[0].length;
marked = new boolean[n][m];
this.word = word;
this.board = board;
for (int i = 0; i < m; i++) {
for (int j = 0; j < n; j++) {
if (dfs(i, j, 0)) {
return true;
}
}
}
return false;
}
/**
* 利用回溯算法,搜索矩阵
* @param i -> x
* @param j -> y
* @param start 搜索到单词的第几位了
* @return 是否正确
*/
private boolean dfs(int i, int j, int start) {
// 最后一位, 结束条件
if (start == word.length() - 1) {
return this.board[i][j] == word.charAt(start);
}
if (this.board[i][j] == word.charAt(start)) {
// 当前位置的矩阵是匹配的,修改标记
marked[i][j] = true;
// 搜索4个方向的值
for (int k = 0; k < 4; k++) {
int x = i + direction[k][0];
int y = j + direction[k][1];
// 判断是否越界
if (x >= 0 && x < m && y >= 0 && y < n) {
if (!marked[x][y]) {
if (dfs(x, y, start + 1)) {
return true;
}
}
}
}
marked[i][j] = false;
}
return false;
}
# 官方题解
这份题解写的很垃圾,后面可以优化一下
class TrieNode {
HashMap<Character, TrieNode> children = new HashMap<Character, TrieNode>();
String word = null;
public TrieNode() {}
}
class Solution {
char[][] _board = null;
ArrayList<String> _result = new ArrayList<String>();
public List<String> findWords(char[][] board, String[] words) {
// Step 1). Construct the Trie
TrieNode root = new TrieNode();
for (String word : words) {
TrieNode node = root;
for (Character letter : word.toCharArray()) {
if (node.children.containsKey(letter)) {
node = node.children.get(letter);
} else {
TrieNode newNode = new TrieNode();
node.children.put(letter, newNode);
node = newNode;
}
}
node.word = word; // store words in Trie
}
this._board = board;
// Step 2). Backtracking starting for each cell in the board
for (int row = 0; row < board.length; ++row) {
for (int col = 0; col < board[row].length; ++col) {
if (root.children.containsKey(board[row][col])) {
backtracking(row, col, root);
}
}
}
return this._result;
}
private void backtracking(int row, int col, TrieNode parent) {
Character letter = this._board[row][col];
TrieNode currNode = parent.children.get(letter);
// check if there is any match
if (currNode.word != null) {
this._result.add(currNode.word);
currNode.word = null;
}
// mark the current letter before the EXPLORATION
this._board[row][col] = '#';
// explore neighbor cells in around-clock directions: up, right, down, left
int[] rowOffset = {-1, 0, 1, 0};
int[] colOffset = {0, 1, 0, -1};
for (int i = 0; i < 4; ++i) {
int newRow = row + rowOffset[i];
int newCol = col + colOffset[i];
if (newRow < 0 || newRow >= this._board.length || newCol < 0
|| newCol >= this._board[0].length) {
continue;
}
if (currNode.children.containsKey(this._board[newRow][newCol])) {
backtracking(newRow, newCol, currNode);
}
}
// End of EXPLORATION, restore the original letter in the board.
this._board[row][col] = letter;
// Optimization: incrementally remove the leaf nodes
if (currNode.children.isEmpty()) {
parent.children.remove(letter);
}
}
}
# 易错点
- 易错项 1